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The zero-temperature dynamics of neural networks is used to study history-dependent effects

in random magnets.

Random-field as well as random-bond Ising models are shown to exhibit

hysteresis. The hysteresis loops of the random-bond model have a staircase structure while those of
the random-field model are relatively smooth. We discuss the relevance of neural networks in the
context of random-bond models, and the bearing the neural network dynamics has on the spectrum

of relaxation times in a hysteretic system.

PACS number(s): 64.60.Cn, 75.60.Ej, 81.40.Rs, 75.10.Nr

I. INTRODUCTION

History-dependent effects occur in a wide variety of
materials. A familiar example is hysteresis in magnets.
As the applied field is swept from a large negative value
(saturating the magnetization to its full negative value)
to a large positive value and back, the magnetization
curve makes a loop. Thus the induced magnetization
does not depend on the applied field alone, but also on
the previous condition of the magnet. If the magnet was
previously situated in a larger magnetic field it yields a
larger magnetization. Similar but more complex history-
dependent effects are seen in spin glasses [1] as well. The
theoretical understanding of history-dependent effects is
still in its infancy. These effects are sometimes thought
to be nonequilibrium phenomena, and this is seen as the
primary difficulty in understanding them on the basis of
equilibrium statistical mechanics. In the present work
we adopt the viewpoint that systems showing history-
dependent effects have several equilibrium states. We
view each equilibrium state as an attractor under the
relaxational dynamics of the system. The configurational
states of the system form a number of nonoverlapping
domains. Each domain includes an equilibrium state,
and other states which relax into the equilibrium state
under the system’s dynamics. Initial configurations lying
in separate domains produce distinct equilibrium states.
This is the origin of the history-dependent effects in our
scheme. The initial states can be varied by preparing the
system differently or by tuning a relevant parameter of
the system such as the applied field.

In order to proceed further we need a model of the sys-
tem as well as its relaxational dynamics. For this purpose
we adopt the Hopfield model [2] of a neural network and
its zero-temperature parallel dynamics. The motivation
for this choice is as follows. History-dependent effects are
observed at relatively low temperatures. This means that
the thermal energy of a hysteretic system is small in com-
parison with other relevant energy scales. The relevant
energy scales are the barriers between different equilib-
rium states and these are apparently controlled by the
amount of disorder in the system. In hysteretic systems
the relaxation appears to be dominated by disorder ef-
fects rather than thermal effects. The zero-temperature
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parallel dynamics suffices as a minimal model for study-
ing the key features of hysteresis. The restriction to par-
allel dynamics is not serious although it greatly simplifies
analytical as well as numerical calculations. The main
difference between parallel and sequential dynamics is
that the sequential dynamics takes about N (number of
spins) steps more for each step of the parallel dynam-
ics, and always ends in a fixed point configuration. This
is because the sequential dynamics flips a spin only if it
lowers the energy of the system. However, it is possible
to modify the parallel dynamics such that it too yields
only fixed points.

The motivation for modeling the system by a neural
network is as follows. Experience with spin glasses has
shown that random systems having several equilibrium
states have conflicting interactions, and the equilibrium
states have no apparent long-range order. It is difficult
to have direct knowledge of interactions in a random sys-
tem. It is more convenient to mathematically construct
the interactions by the superposition of a number of ran-
dom configurations of the system as is done in the neural
network models of associative memory. The neural net-
work dynamics yields equilibrium configurations which
are quite similar to the ones used for the construction
of the interactions. We consider neural network models
based on Ising spins. The pair interactions between spins
are taken to be random in sign and magnitude, and in-
finite range in the sense that every spin interacts with
every other spin. The equilibrium states have no net
magnetization in the absence of an applied field, i.e., as
many spins are up as down. Some reflection shows that
this is not an inappropriate model for a ferromagnet hav-
ing several magnetized domains, but with net magnetiza-
tion zero. We can think of all the up spins as belonging
to one class, and the down spins as belonging to another
class. The effective interactions within each class are fer-
romagnetic and across the two classes antiferromagnetic.
The number of ferromagnetic and antiferromagnetic in-
teractions are approximately equal. This is just another
way of looking at the energetics of domain formation.
We recall that the physical reason for the formation of
domains is the competition between the exchange forces
which prefer to have all spins parallel and the long-range
dipolar forces which prefer distant regions to be magne-
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tized opposite to each other. The number of domains
in equilibrium are determined by the balance between
the magnetic energy contained within domains and the
energy across domain walls.

II. RELAXATION DYNAMICS

The system is characterized by the Hamiltonian
1
H = —Ezj:.],'jsisj' —zi:fisi(t)—H;s,;(t) . (1)

Here {s; = £1} are N Ising spins with pair interactions
Jij, fi is arandom field (included in order to compare our
results with the work on the random-field Ising model),
and H is the applied field. The pair interactions are gen-
erated by the superposition of p uncorrelated patterns,

1 P
Jij = N;fﬁﬁ;(l “5ij) ’ (2)

where ¢! are quenched random Ising variables with equal
probability of being +1. The spins are updated in parallel
by the rule

s;(t + 1) = sgnh;(t),
3)
h,‘(t) = —Z]iij(t) - f;i—H.

Here h; is the local field at the ith site. We find it useful
to define a quantity,

G(t) = —Z |hi(t)] + Zf,-s,-(t) +HZs,-(t) . 4)

The quantity G(t) is somewhat analogous to the zero-
temperature Gibbs free energy in the sense that the first
term is similar to the internal energy of the system and
the last two terms constitute the potential energy of the
magnet in the applied field. The quantity G(t) has the
remarkable property that it is a decreasing function of
time under the parallel dynamics of the system. In this
sense it is indeed like a free energy, and the spin update
rule mimics the true relaxational dynamics of a physical
system because it takes the system towards lower free
energy. It can be shown that

G(t+1) — G(t) = Y |hi(t + 1)|{s:(t)si(t +2) — 1} .

(5)
The derivation of Eq. (5) is independent of the specific
form of the pair interactions and assumes only that they
are symmetric, i.e., J;; = Jj;. It proves that G(t) is a
decreasing function of time because the first factor on the
right-hand side is positive and the second factor in the
curly braces can only take the values 0 or —1. Thus at
each step the dynamics takes the system to a lower value
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of G(t).

An interesting result which can be deduced from
Eq. (5) is that the end result of the dynamics is a
fixed point or a limit cycle of period two in the con-
figuration space. For a finite number of spins, G(t)
has a lower bound and therefore the dynamics cannot
lower G indefinitely. It must end at a locally minimum
value of G, say G*. Equation (5) requires that when
G(t+1) = G(t) = G* we must have s;(t)s;(t+2) =1, or
equivalently s;(t + 2) = s;(t) at each site. This means
that the fixed point G* corresponds to a limit cycle
of period two in the configuration space. Note that a
limit cycle of period two does not necessarily mean that
8i(t+1) = —s;(t) for each i. A fraction of the spins may
remain frozen, i.e., s;(t) = s;(t + 1) = s;(t + 2) for some
sites 7. A fixed point is a special case of a limit cycle of
period two when s;(t) = s;(t + 1) = s;(t + 2) for each
site 2. The dynamical equation (3) does not give a clear
prescription of how to update a spin in zero local field.
In this case we may supplement this equation by requir-
ing either (i) si(t + 1) = s;(t), or (ii) s;(t + 1) = —s;(2t),
or (iii) s;(t + 1) = 0. For any of these choices the final
state of the dynamics is a fixed point or a limit cycle
of period two. We also note that in the case of totally
antisymmetric pair interactions, i.e., J;; = —Jj;, the in-
equality G(t+1) < G(¢) is still valid but we obtain a limit
cycle of period four. It follows from the dynamical equa-
tions that the mirror image of every fixed point (limit
cycle) is also a fixed point (limit cycle). The two compo-
nent states of a limit cycle of period two have the same
G*. We exploited this property to modify the parallel
dynamics with an additional rule that the configurations
would be updated only if G(t + 1) < G(t), but not if
G(t+ 1) = G(t). This modified parallel dynamics gives
only fixed points as does the sequential dynamics. It
is of course more efficient than the sequential dynamics
because the sequential dynamics requires about N steps
for each step of the parallel dynamics. Therefore we have
adopted the modified parallel dynamics in our numerical
work. However, all choices of the dynamical update rule
yield qualitatively similar results.

III. HYSTERESIS

Having described the general features of the model dy-
namics, we now apply it to study hysteresis. As indicated
earlier, hysteresis arises in systems having several equi-
librium states. We are not aware of any general criteria
which govern the number of equilibrium states of a sys-
tem, but we note that strongly disordered systems such
as spin glasses have a large number of nearly degenerate
equilibrium states separated by high energy barriers. We
limit ourselves to the study of disorder-driven hysteresis
only based on the random-field and random-bond Ising
models. First we consider the case of site disorder. Let
p =1, i.e., let only one configuration be stored. Let this
configuration have all spins up. In view of the mirror im-
age symmetry the complementary configuration having
all spins down is automatically stored in the interaction
matrix J;;. This interaction favors a ferromagnetic state
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with all spins up or all down. An on-site random field
is incorporated through the f; term in Eq. (1). We will
not discuss this case in detail because it is very similar
to the work of Sethna et al. [3]. However, a remark is in
order. Reference [3] demonstrates hysteresis in the near-
est neighbor random-field Ising model on a simple cubic
lattice by numerical simulation of the model. A mean
field theory based on the infinite-range interaction does
not show any hysteresis. This may create an erroneous
impression that hysteresis is a property of short-range
interactions only and lost in models where a spin inter-
acts with every other spin. Our numerical simulations
of the neural network model with p = 1 and random
fields produce hysteresis loops almost identical to those
reported in Ref. [3]. Thus a random-field Ising model in
which a spin interacts with all other spins shows hystere-
sis. The problem is not with the range of interactions but
with the method of the signal-to-noise ratio on which the
mean field theory is based [4]. This method fails when
the noise is greater than the signal.

Next we consider the random-bond Ising model. Ran-
dom bonds are generated in accordance with Eq. (2) by
superposing p configurations. Again, one configuration is
chosen to have all spins up. This amounts to having an
interaction 1/N between each pair of spins. It favors a
ferromagnetic ground state with all spins up or all spins
down. There is no randomness in the model so far and
no hysteresis. Randomness is provided by p — 1 other
configurations which are chosen randomly. Increasing p
increases randomness in the model and gives rise to more
pronounced hysteretic effects. The solid curve in Fig. 1
shows a typical hysteresis loop for p = 2N (N = 200).
This corresponds to a relatively large disorder in the sys-

N = 200 P =400

Magnetization (M)

Field (H)

FIG. 1. Hysteresis in a neural network of 200 Ising spins
with 400 stored states. The bold curve shows the magneti-
zation; lower (upper) portion corresponds to increasing (de-
creasing) field. The broken line shows the number of itera-
tions required to reach the final state in increasing field. The
dotted line shows the variation of the fixed point energy G*
in the increasing field.
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tem. Other values of p yield similar results. The hys-
teresis curve is obtained as follows. Starting from a ran-
dom initial configuration, the system is allowed to evolve
under the parallel dynamics in a sufficiently large neg-
ative field. In one or two iterations the system settles
into a fixed point configuration having all spins down as
expected. Next the field is increased in a suitable step
and the previous fixed point state is used as the initial
state. After a few iterations a new fixed point configura-
tion is obtained and the magnetization M = % ;s of
this configuration is plotted against the applied field. In
this way the field is swept up to a sufficiently high value
(vielding a fixed point state with all spins up), and back.

A prominent feature of the hysteresis loop is its stair-
caselike structure. The vertical steps are not exactly ver-
tical but only approximately so. The graph shows mag-
netization at successive intervals of the applied field. In
any one portion of the hysteresis loop pertaining to ei-
ther increasing or decreasing field there are nowhere two
values of the magnetization for the same field, i.e., no
exactly vertical steps. Nevertheless the variation in mag-
netization occurs in the form of very steep climbs over
small increments of the applied field. The nearly verti-
cal steps are separated by longer spans of applied field
with the magnetization remaining nearly constant. A
closer examination of the hysteresis loop reveals an exact
symmetry between the two halves of the loop correspond-
ing to increasing and decreasing field, respectively. This
symmetry follows from the invariance of the dynamical
equations when all the spins are flipped and the sign of
the applied field is also reversed. Other attributes of the
graph such as the number of iterations taken to arrive at
the fixed point configuration and the free energy G* of
this configuration possess the same symmetry. Therefore
we have shown these quantities in Fig. 1 for increasing
field only. The broken curve in Fig. 1 shows the number
of iterations taken by the dynamics to reach the fixed
point configuration. This number varies from 1 to 35 but
we have scaled it down to the range 0 to 1 so that it
can share a common y axis scale along with magnetiza-
tion. The number of steps taken to reach the final state
is normally one or two except at the near-vertical steps
of the hysteresis curve where it takes longer to reach the
final state. Larger jumps in magnetization generally re-
quire a larger number of iterations. The distribution of
the number of iterations has the same significance as the
spectrum of relaxation times in a physical system. Our
model predicts that the experimental relaxation times
will be longest in the region where the magnetization
switches over from negative values to positive values in
increasing field. As far as we are aware no systematic
experimental study has been reported concerning the re-
laxation times of a hysteretic system in different applied
fields. It is possible that even the longest relaxation times
may be too short for ordinary experiments to resolve the
spectrum of relaxation times even if one existed. The dot-
ted curve in Fig. 1 shows the equilibrium free energy G*
at various values of the field. G* varies approximately
from —400 to 25, but again the range has been scaled
down to —1 to 1 so that it can share the y-axis scale for
magnetization.
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IV. CONCLUDING REMARKS

We conclude that randomness may be the key to un-
derstanding history-dependent effects in materials. The
study of random-field as well as random-bond Ising mod-
els reveals that strongly disordered systems are inher-
ently hysteretic. The random-field model gives a rela-
tively smooth hysteresis curve very similar to what is
observed in a typical laboratory experiment. On the
other hand, the random-bond model gives a hysteresis
curve with an apparently staircase structure. The ran-
domness in the random-field model is independent of the
spin configuration of the system and therefore it does not
change during the relaxation of the system from an ini-
tial state to its final equilibrium state. This feature of
the model is somewhat unphysical. On the other hand,
in the random-bond model the random field acting on a
spin depends on the state of the other spins as well and
changes during the dynamical evolution of the system.
The random-bond model appears to be more physical
from this point of view but surprisingly it is the random-
field model which gives more familiar hysteresis curves.
This result suggests that in a typical magnet showing hys-
teresis the random field acting on an atomic magnetic
moment may arise from the disorder in its immediate
environment (containing perhaps nonmagnetic moment
bearing atoms) and the effect of other magnetic moments
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through exchange forces may be of little importance. The
random-field model shows return-point memory as well.
This has been explained theoretically on the basis of
Middleton’s no passing theorem [5]. Middleton’s theo-
rem guarantees return-point memory if the dynamics is
adiabatic. However, some reflection would convince the
reader that Middleton’s theorem fails in the case of a
random-bond model if the sign of the bonds is random.
One has to look for an alternate theoretical basis for ana-
lyzing the random-bond model. We have proposed a free
energy like quantity G which decreases under the paral-
lel dynamics for the random-field as well as the random-
bond model. This helps us to understand several aspects
of the numerical simulations, e.g., the symmetry of the
hysteresis loop, and also why the dynamical trajectories
end in a fixed point or a limit cycle of period two, but are
never chaotic. The limit cycles can be eliminated by a
slight modification of the parallel dynamics leaving only
fixed point configurations as the equilibrium states. It
not only brings the simulations closer to the hysteretic
behavior of physical systems but also illustrates the pri-
mary importance of the relaxation dynamics in deter-
mining the energy barriers between different equilibrium
states of a disordered system. In short, the modified par-
allel dynamics of Ising neural networks provides a fairly
useful laboratory for studying history-dependent effects
in disordered systems.
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